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ABSTRACT

Solar, stellar and galactic large-scale magnetic fields are originated due to a com-
bined action of non-uniform (differential) rotation and helical motions of plasma via
mean-field dynamos. Usually, nonlinear mean-field dynamo theories take into account
algebraic and dynamic quenching of alpha effect and algebraic quenching of turbulent
magnetic diffusivity. However, these theories do not take into account a feedback of
the mean magnetic field on the background turbulence (with a zero mean magnetic
field). Our analysis using the budget equation for the total (kinetic plus magnetic)
turbulent energy, which takes into account the feedback of the generated mean mag-
netic field on the background turbulence, has shown that a nonlinear dynamo number
decreases with increase of the mean magnetic field for a forced turbulence, and a
shear-produced turbulence and a convective turbulence. This implies that mean-field
dynamo instability is always saturated.

Key words: dynamo – MHD – Sun: interior — turbulence – activity – dynamo–
galaxies: magnetic fields

1 INTRODUCTION

Large-scale magnetic fields in the sun, stars and galax-
ies are believed to be generated by a joint action of
a differential rotation and helical motions of plasma
(see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler
1980; Zeldovich et al. 1983; Ruzmaikin et al. 1988;
Rüdiger et al. 2013; Moffatt & Dormy 2019; Rogachevskii
2021; Shukurov & Subramanian 2021). This mechanism can
be described by the αΩ or α2Ω mean-field dynamos. In par-
ticular, the effect of turbulence in the mean-field induction
equation is determined by the turbulent electromotive force,
〈u × b〉, which can be written for a weak mean magnetic
field B as 〈u × b〉 = α

K
B + V (eff) × B − ηT (∇ × B),

where α
K
is the kinetic α effect caused by helical motions of

plasma, ηT is the turbulent magnetic diffusion coefficient,
V (eff) is the effective pumping velocity caused by an
inhomogeneity of turbulence. Here the angular brackets
imply ensemble averaging, u and b are fluctuations of
velocity and magnetic fields, respectively. The threshold
of the αΩ mean-field dynamo instability is described in
terms of a dynamo number DL = α

K
δΩL3/η2

T
, where δΩ

characterises the non-uniform (differential) rotation and L
is the stellar radius or the thickness of the galactic disk.

The mean-field dynamos are saturated by nonlinear ef-
fects. In particular, a feedback of the growing large-scale

magnetic field on plasma motions is described by alge-
braic quenching of the α effect, turbulent magnetic diffu-
sion, and the effective pumping velocity. This implies that
the turbulent transport coefficients, α

K

(

B
)

, ηT

(

B
)

and

V (eff)
(

B
)

depend on the mean magnetic field B via alge-
braic decreasing functions. The quantitative theories of the
algebraic nonlinearities of the α effect, the turbulent mag-
netic diffusion and the effective pumping velocity have been
developed using the quasi-linear approach for small fluid
and magnetic Reynolds numbers (Rüdiger & Kichatinov
1993; Kitchatinov et al. 1994; Rüdiger et al. 2013) and the
tau approach for large fluid and magnetic Reynolds num-
bers (Field et al. 1999; Rogachevskii & Kleeorin 2000, 2001,
2004, 2006).

In addition to the algebraic nonlinearity, there is also
a dynamic nonlinearity caused by an evolution of magnetic
helicity density of a small-scale turbulent magnetic field dur-
ing the nonlinear stage of the mean-field dynamo. In partic-
ular, the α effect has contributions from the kinetic α effect,
α

K
, determined by the kinetic helicity and a magnetic α ef-

fect, α
M
, described by the current helicity of the small-scale

turbulent magnetic field (Pouquet et al. 1976). The dynam-
ics of the current helicity are determined by the evolution
of the small-scale magnetic helicity density Hm = 〈a·b〉,
where b = ∇×a and a are fluctuations of the magnetic vec-
tor potential. The total magnetic helicity, i.e., the sum of
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2 I. Rogachevskii, N. Kleeorin

the magnetic helicity densities of the large-scale and small-
scale magnetic fields, HM+Hm, integrated over the volume,
∫

(HM + Hm) dr3, is conserved for very small microscopic
magnetic diffusivity η. Here HM = A·B is the magnetic he-
licity density of the large-scale magnetic field B = ∇×A

and A is the mean magnetic vector potential.
As the mean-field dynamo amplifies the mean mag-

netic field, the large-scale magnetic helicity density HM

grows in time. Since the total magnetic helicity
∫

(HM +
Hm) dr3 is conserved for very small magnetic diffusivity,
the magnetic helicity density Hm of the small-scale field
changes during the dynamo action, and its evolution is de-
termined by the dynamic equation (Kleeorin & Ruzmaikin
1982; Zeldovich et al. 1983; Gruzinov & Diamond 1994;
Kleeorin et al. 1995; Kleeorin & Rogachevskii 1999).

In a nonlinear αΩ dynamo one can define a nonlinear
dynamo number DN

(

B
)

= α
(

B
)

δΩL3/η2
T

(

B
)

. If the non-

linear dynamo number DN

(

B
)

decreases with the increase
of the large-scale magnetic field, the mean-field dynamo in-
stability is saturated by the nonlinear effects. However, if the
α effect and the turbulent magnetic diffusion are quenched
as (B/Beq)

−2 for strong mean magnetic fields, the nonlin-
ear dynamo number DN

(

B
)

∝ (B/Beq)
2 increases with the

increase of the large-scale magnetic field, and the mean-field
dynamo instability cannot be saturated for a strong mean

magnetic field. Here Beq =
(

µ0 ρ 〈u2〉
)1/2

is the equiparti-
tion mean magnetic field and µ0 is the magnetic permeabil-
ity of the fluid. How is it possible to resolve this paradox?

The mean-field dynamo theories imply that there is a
background helical turbulence with a zero mean magnetic
field. Due to the combined effect of the differential rotation
and helical motions in the background turbulence (described
by the kinetic α effect), a large-scale magnetic field is am-
plified by the mean-field dynamo instability. In a nonlinear
dynamo stage, there is an additional feedback effect of the
growing large-scale magnetic field on the background tur-
bulence. However, this effect has not been yet taken into
account in nonlinear mean-field dynamo theories.

In the present study, we have taken into account the
feedback of the mean magnetic field on the background tur-
bulence using the budget equation for the total (kinetic
plus magnetic) turbulent energy. Considering three differ-
ent types of astrophysical turbulence:

• a forced turbulence (e.g., caused by supernova explo-
sions in galaxies);

• a shear-produced turbulence (e.g., in the atmosphere of
the Earth or other planets) and

• a convective turbulence (e.g., in a solar and stellar con-
vective zones),

we have demonstrated that the nonlinear dynamo number
decreases for any strong values of the mean magnetic field
for these three kinds of turbulence, resulting in saturation
of the mean-field dynamo instability.

2 BUDGET EQUATIONS

Using the Navier-Stokes equation for velocity fluctuations,
we derive the budget equation for the density of turbulent

kinetic energy (TKE), E
K
= ρ 〈u2〉/2 as

∂E
K

∂t
+ divΦ

K
= Π

K
− ε

K
, (1)

where Φ
K
=
〈

u
(

ρu2/2 + p
)〉

−ν ρ∇E
K
is the flux of TKE,

ε
K
= ν ρ

〈

(∇jui)
2
〉

is the dissipation rate of TKE, and

Π
K
= − 1

µ0

[

〈u · [b × (∇× b)]〉 − 〈u× (∇× b)〉 ·B

+ 〈u× b〉 · (∇×B)

]

+ ρ
[

g Fz − 〈uiuj〉 ∇jU i

+ 〈u · f〉
]

(2)

is the production rate of TKE. Here U is the mean velocity,
ν is the kinematic viscosity and the angular brackets imply
ensemble averaging, F = 〈su〉 is the turbulent flux of the
entropy, s = θ/T + (γ−1 − 1)p/P are entropy fluctuations,
θ and T are fluctuations and mean fluid temperature, ρ and
ρ are fluctuations and mean fluid density, p and P are fluc-
tuations and mean fluid pressure, γ = cp/cv is the ratio of
specific heats, g is the acceleration due to the gravity and
ρf is the external steering force with a zero mean.

We consider three different cases when turbulence is
produced either by convection, or by large-scale shear mo-
tions or by an external steering force, see the last three terms
in the RHS of Eq. (2). The first two terms in the RHS
of Eq. (2) describe an energy exchange between the tur-
bulent kinetic and magnetic energies (see below), and the
third term in the RHS of Eq. (2) are due to the work of the
Lorentz force in a nonuniform mean magnetic field. The esti-
mate for the dissipation rate of the turbulent kinetic energy
density in homogeneous isotropic and incompressible turbu-
lence with a Kolmogorov spectrum is ε

K
= E

K
/τ0, where τ0

is the characteristic turbulent time at the integral scale.
Using the induction equation for magnetic fluctuations,

we derive the budget equation for the density of turbulent
magnetic energy (TME), E

M
= 〈b2〉/2µ0 as

∂E
M

∂t
+ divΦ

M
= Π

M
− ε

M
, (3)

where

Φ
M

=
1

µ0

[

〈b× (u× b)〉+ 〈u bj〉 Bj − 〈u · b〉 B

+
〈

b
2〉

U − 〈b bj〉 U j − η 〈b× (∇× b)〉
]

(4)

is the flux of TME, ε
M

= η
〈

(∇× b)2
〉

/µ0 is the dissipation
rate of TME, and

Π
M

=
1

µ0

[

〈u · [b× (∇× b)]〉 − 〈u× (∇× b)〉 ·B

+ 〈bi bj〉 ∇jU i −
〈

b
2〉 (

∇ ·U
)

]

(5)

is the production rate of TME. Here η is the magnetic diffu-
sion due to electrical conductivity of the fluid. The first two
terms in the RHS of Eq. (5) describe an energy exchange
between the turbulent magnetic and kinetic energies. The
estimate for the dissipation rate of the turbulent magnetic
energy density is ε

M
= E

M
/τ0.

The density of total turbulent energy (TTE), E
T

=

© 0000 RAS, MNRAS 000, 000–000



Budget equations and astrophysical nonlinear mean-field dynamos 3

E
K
+ E

M
, is determined by the following budget equation:

∂E
T

∂t
+ divΦ

T
= Π

T
− ε

T
, (6)

where

Π
T
=

[

(

〈bi bj〉 − µ0 ρ 〈uiuj〉
)

∇jU i −
〈

b
2〉 (

∇ ·U
)

−〈u× b〉 ·
(

∇×B
)

]

µ−1
0 + ρ

(

g Fz + 〈u · f〉
)

. (7)

is the production rate of E
T
, ε

T
= ε

K
+ε

M
is the dissipation

rate of E
T
and Φ

T
= Φ

K
+Φ

M
is the flux of E

T
.

To determine the production rate of TTE, we use
the following second moments for magnetic fluctuations
(Rogachevskii & Kleeorin 2007),

〈bi bj〉 =
B 2

2

[

2qp
(

B
)

δij − qs
(

B
)

(

δij + βij

)

]

, (8)

and velocity fluctuations,

ρ 〈ui uj〉 = −B 2

2µ0

[

2qp
(

B
)

δij − qs
(

B
)

(

δij + βij

)

]

+ρ 〈ui uj〉(0) , (9)

where βij = BiBj/B
2. The tensor 〈ui uj〉(0) for a back-

ground turbulence (with a zero mean magnetic field)
in Eq. (9) has two contributions caused by background
isotropic velocity fluctuations and tangling anisotropic
velocity fluctuations due to the mean velocity shear
(Elperin et al. 2002):

〈ui uj〉(0) = 1

3

〈

u
2〉(0) δij − 2ν(0)

T

(

∂U
)

ij
, (10)

where
(

∂U
)

ij
= (∇iU j +∇jU i)/2 and ν(0)

T
= τ0〈u2〉(0)/3 is

the turbulent viscosity. For simplicity, in Eq. (8) we do not
take into account a small-scale dynamo with a zero mean
magnetic field.

The nonlinear functions qp(B) and qs(B) entering in
Eq. (8)–(9) are given by Eqs. (A1)–(A2) in Appendix A.
The asymptotic formulae for the nonlinear functions qp(B)
and qs(B) are as follows. For a very weak mean magnetic
field, B ≪ Beq/4Rm1/4, the nonlinear functions are given
by

qp(B) =
2

5

[

ln Rm+
4

45

]

, (11)

qs(B) =
8

15

[

ln Rm+
2

15

]

, (12)

where B
2
eq = µ0 ρ 〈u2〉. For Beq/4Rm1/4 ≪ B ≪ Beq/4,

these nonlinear functions are given by

qp(B) =
16

25

[

5| ln(
√
2β)|+ 1 + 4β2

]

, (13)

qs(B) =
32

15

[

| ln(
√
2β)|+ 1

30
+

3

2
β2

]

, (14)

and for B ≫ Beq/4 they are given by

qp(B) =
4

3β2
, qs(B) =

π
√
2

3β3
. (15)

where β =
√
8 B/Beq.

Substituting Eqs. (8)–(10) into Eq. (7), we obtain the

production rate of TTE as

Π
T
=

[

B 2

2µ0

(

3qp
(

B
)

− qs
(

B
)

)

− ρ
〈

u2
〉(0)

3

]

(

∇ ·U
)

+

[

2νT ρ
(

∂U
)

ij
− 1

µ0
qs
(

B
)

BiBj

]

(

∂U
)

ij

− 1

µ0
E
(

B
)

· (∇×B) + ρ
(

g Fz + 〈u · f〉
)

, (16)

where E
(

B
)

= 〈u× b〉 is the turbulent nonlinear electromo-
tive force. Using the steady state solution of Eq. (6), we esti-
mate the total turbulent energy density as E

K
+E

M
∼ τ0 ΠT

.
Equation (8) yields the density of turbulent magnetic energy
E

M
= 〈b2〉/2µ0 as

E
M

=
[

3qp
(

B
)

− 2qs
(

B
)] B 2

2µ0
. (17)

In the next sections, we apply the budget equations for anal-
ysis of nonlinear mean-field αΩ, α2 and α2Ω dynamos.

3 MEAN-FIELD αΩ DYNAMO

In this section, we consider the axisymmetric mean-field αΩ
dynamo, so that the mean magnetic field can be decomposed
as

B = By(t, x, z)ey + rot[A(t, x, z)ey], (18)

and nonlinear mean-field induction equation reads

∂

∂t

(

A

By

)

= N̂

(

A

By

)

, (19)

where the operator N̂ is given by

N̂ =





η(A)
T

(

B
)

∆ α
(

B
)

RαRω Ω̂ ∇j η
(B)
T

(

B
)

∇j



 , (20)

and the operator

Ω̂A =
∂(δΩ sinϑ, A)

∂(z, x)
(21)

describes differential rotation. Here ϑ is the angle between
δΩ and the vertical coordinate z and L is the characteristic
scale (e.g., the radius of a star or the thickness of a galactic
disk). The total α effect is the sum of the kinetic α effect,
α

K
(B), and the magnetic α effect, α

M
(B),

α(B) = α
K
(B) + α

M
(B), (22)

where the kinetic α effect is proportional to the kinetic
helicity Hu = 〈u·(∇×u)〉, and the magnetic α effect is pro-
portional to the current helicity Hc

(

B
)

= 〈b·(∇×b)〉
of the small-scale magnetic field b (Pouquet et al.
1976). In particular, the magnetic α effect is given by
α

M
(B) = τ0 Hc

(

B
)

φ
M

(

B
)

/(3µ0 ρ) , where φ
M

(

B
)

is the algebraic quenching function of the magnetic α
effect (Field et al. 1999; Rogachevskii & Kleeorin 2000).
The dynamics of the current helicity Hc

(

B
)

depends
on evolution of the small-scale magnetic helicity density
Hm

(

B
)

= 〈a·b〉, that is determined by a budget equation
including the source terms (Kleeorin & Ruzmaikin 1982;
Gruzinov & Diamond 1994; Kleeorin et al. 1995) and tur-
bulent fluxes of magnetic helicity (Kleeorin & Rogachevskii
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4 I. Rogachevskii, N. Kleeorin

1999; Kleeorin et al. 2000; Blackman & Field 2000;
Vishniac & Cho 2001; Brandenburg & Subramanian
2005; Kleeorin & Rogachevskii 2022;
Gopalakrishnan & Subramanian 2023). Here b = ∇×a are
magnetic fluctuations and a are fluctuations of magnetic
vector potential.

Taking into account turbulent fluxes of the small-
scale magnetic helicity, it has been shown by numerical
simulations that a nonlinear galactic dynamo governed
by a dynamic equation for the magnetic helicity density
Hm of a small-scale field (the dynamical nonlinearity)
saturates at a mean magnetic field comparable with the
equipartition magnetic field (see, e.g., Kleeorin et al.
2000, 2002, 2003b,a; Blackman & Brandenburg 2002;
Brandenburg & Subramanian 2005; Shukurov et al. 2006).
Numerical simulations demonstrate that the dynamics
of magnetic helicity plays a crucial role in solar dy-
namo as well (see, e.g., Kleeorin et al. 2003b, 2016, 2020;
Sokoloff et al. 2006; Zhang et al. 2006, 2012; Käpylä et al.
2010; Hubbard & Brandenburg 2012; Del Sordo et al.
2013; Safiullin et al. 2018; Rincon 2021). Different
forms of magnetic helicity fluxes have been suggested
in various studies using phenomenological arguments
(Kleeorin & Rogachevskii 1999; Kleeorin et al. 2000,
2002; Vishniac & Cho 2001; Subramanian & Brandenburg
2004; Brandenburg & Subramanian 2005). Recently,
the turbulent magnetic helicity fluxes have been
rigorously derived (Kleeorin & Rogachevskii 2022;
Gopalakrishnan & Subramanian 2023). In particular,
Kleeorin & Rogachevskii (2022) apply the mean-field
theory, adopt the Coulomb gauge and consider a strongly
density-stratified turbulence. They have found that the
turbulent magnetic helicity fluxes depend on the mean mag-
netic field energy, and include non-gradient and gradient
contributions. In addition, Gopalakrishnan & Subramanian
(2023) have recently shown that contributions to the
turbulent magnetic helicity fluxes from the third-order
moments can be described using the turbulent diffusion
approximation.

The kinetic α effect is given by α
K

(

B
)

= α(0)
K

φ
K

(

B
)

(Rogachevskii & Kleeorin 2004), where for a forced turbu-
lence α(0)

K
= −τ0 Hu/3 and the algebraic quenching func-

tion φ
K

(

B
)

of the kinetic α effect has the following asymp-

totic behavior: φ
K

= 1 when B ≪ Beq/4 and φ
K

=
(1/4) (B/Beq)

−2 when B ≫ Beq/4. The similar asymptotic
behavior is also for the algebraic quenching of the magnetic
α effect.

The turbulent magnetic diffusion of the toroidal mean
magnetic field is given by (Rogachevskii & Kleeorin 2004):

η(B)
T

(

B
)

= η(0)
T

φ
(B)
η

(

B
)

, where η(0)
T

= τ0〈u2〉(0)/3, the al-

gebraic quenching function φ
(B)
η

(

B
)

of the toroidal mean

magnetic field is φ
(B)
η = 1 when B ≪ Beq/4 and

φ
(B)
η = (1/4) (B/Beq)

−1 when B ≫ Beq/4. The simi-
lar asymptotic behavior is also for the turbulent viscos-
ity (Rogachevskii & Kleeorin 2004). The turbulent magnetic
diffusion of the poloidal mean magnetic field behaves as
(Rogachevskii & Kleeorin 2004): η(A)

T

(

B
)

= η(0)
T

φ
(A)
η

(

B
)

,

where the algebraic quenching function φ
(A)
η

(

B
)

of the

poloidal mean magnetic field is φ
(A)
η = 1 when B ≪ Beq/4

and φ
(A)
η = (1/8) (B/Beq)

−2 when B ≫ Beq/4.

Equations (19)–(21) are written in dimensionless vari-
ables: the coordinate is measured in the units of L, the
time t is is measured in the units of turbulent magnetic dif-
fusion time L2/η(0)

T
; the mean magnetic field is measured

in the units of B∗, where B∗ ≡ σ B
eq
∗
, σ = ℓ0/

√
2L,

B
eq
∗

= u0
√
µ0ρ∗, and the magnetic potential, A is measured

in the units of RαLB∗. Here Rα = α∗L/η
(0)
T

, the fluid den-
sity ρ is measured in the units ρ

∗
, the differential rotation δΩ

is measured in units of the maximal value of the angular ve-
locity Ω, the α effect is measured in units of the maximum
value of the kinetic α effect, α∗; the integral scale of the
turbulent motions ℓ0 = τ0 u0 and the characteristic turbu-
lent velocity u0 =

√

〈u2〉(0) at the scale ℓ0 are measured in
units of their maximum values in the turbulent region, and
the turbulent magnetic diffusion coefficients are measured
in units of their maximum values. The magnetic Reynolds
number Rm = ℓ0 u0/η is defined using the maximal values
of the integral scale ℓ0 and the characteristic turbulent ve-
locity u0. The dynamo number for the linear αΩ dynamo is
defined as DL = RαRω, where Rω = (δΩ)L2/η(0)

T
.

Now we define the nonlinear dynamo number DN

(

B
)

for the αΩ dynamo as

DN

(

B
)

=
α
(

B
)

δΩL3

η
(B)
T

(

B
)

η
(A)
T

(

B
)
, (23)

where we take into account that the nonlinear turbu-
lent magnetic diffusion coefficients of the poloidal and
toroidal components of the mean magnetic field are different
(Rogachevskii & Kleeorin 2004). The ratio of energies of the
toroidal and poloidal mean magnetic fields for the αΩ dy-
namos is of the order of D2

L/Dcr, where Dcr is the threshold
for the excitation of the αΩ dynamo.

Next, we take into account the feedback of the mean
magnetic field on the background turbulence using the bud-
get equation for the total turbulent energy. In a shear-
produced non-convective turbulence, the largest contribu-
tions to the production rate of TTE for a strong large-scale
magnetic field is due to the terms −E

(

B
)

· (∇ × B)/µ0

and 2νT

(

B
)

ρ
(

∂U
)2

ij
≡ 2νT ρS2 [see Eq. (16)], where

S2 =
(

∂U
)2

ij
. This implies that the turbulent kinetic energy

density for a strong large-scale magnetic field is estimated
as

E
K
= τ0

[

2νT

(

B
)

ρS2 − 1

µ0
E
(

B
)

· (∇×B)

]

. (24)

Therefore, the turbulent kinetic energy density for strong
mean magnetic fields behaves as

E
K

(

B
)

≈ E(0)
K

[

1 +
D

1/2
cr

DL

(

ℓ0
LB

)2(
B

Beq

)2
]

, (25)

where E(0)
K

= (2/3) ρ ℓ20 S
2 and the characteristic scale of

the mean magnetic field variations LB is defined as LB =
B/|∇×B|. We also take into account that for strong mean
magnetic fields, the ratio of these production terms is

− τ0

E
(0)
K

E
(

B
) (

∇×B
)

∝ D
1/2
cr

DL

(

ℓ0
LB

)2(
B

Beq

)2

. (26)

This yields the estimate for the ratio η(B)
T

(

B
)

/η(0)
T

for

© 0000 RAS, MNRAS 000, 000–000
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strong mean magnetic fields as

η(B)
T

(

B
)

η
(0)
T

≈ 1

4

[

1 +
D

1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)2
]

(

B

Beq

)−1

,

(27)

where the ratio of turbulent diffusion coefficients of poloidal
and toroidal fields η(A)

T

(

B
)

/η(B)
T

(

B
)

is given by

η(A)
T

(

B
)

η
(B)
T

(

B
)
≈ 1

2

(

B

Beq

)−1

, (28)

and η(A,B)
T

(

B
)

= 2τ0 EK

(

B
)

φ
(A,B)
η /3ρ. Therefore, the ratio

of the nonlinear and linear dynamo numbers DN

(

B
)

/DL in
a shear-produced non-convective turbulence for strong mean
magnetic fields is estimated as

DN

(

B
)

DL
≈ 32

[

1 +
D

1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)2
]

−2

×α
(

B
)

α
(0)
K

(

B

Beq

)3

, (29)

where the dependence of the total α effect on the mean mag-
netic field, α

(

B
)

, is caused by the algebraic and dynamic
quenching.

The algebraic quenching describes the feedback of the
mean magnetic field on the plasma motions, while the dy-
namic quenching of the total α effect is caused by the evo-
lution of the magnetic α effect related to the small-scale
current and magnetic helicities. In particular, the dynamic
equation for the small-scale current helicity (which deter-
mines the evolution of the magnetic α effect) in a steady

state yields the total α effect as α
(

B
)

∝ −divF
M
/B

2
, where

F
M

is the magnetic helicity flux of the small-scale magnetic
field. This implies that if F

M
does not quenched with the

growth of the mean magnetic field, the total α effect for

strong magnetic fields behaves as α
(

B
)

∝
(

B/Beq

)

−2
. In

the case of the algebraic quenching of the magnetic helic-
ity flux F

M
, the dependence of α

(

B
)

with the growth of

the mean magnetic field is more stronger, i.e., α
(

B
)

/α(0)
K

∝
(

B/Beq

)

−n
with n > 2. Equation (29) implies that the non-

linear dynamo number decreases for any strong values of
the mean magnetic field for a shear-produced non-convective
turbulence, resulting in saturation of the mean-field dynamo
instability.

In a convective turbulence, the largest contributions to
the production rate of TTE for a strong mean magnetic
fields is due to the buoyancy term ρ g Fz and the term
η(B)
T

(

B
)

(∇×B)2/µ0 [see Eq. (16)]. This implies that the
turbulent kinetic energy density is given by

E
K
= τ0

[

ρ g Fz − 1

µ0
E
(

B
)

· (∇×B)

]

, (30)

where τ0 = ℓ0 [2EK
/ρ]−1/2. Thus, Eq. (30) can be rewritten

as the following nonlinear equation:

Ẽ3/2
K

− ξ
(

B
)

Ẽ1/2
K

− 1 = 0, (31)

where Ẽ
K
= E

K
/E(0)

K
,

E(0)
K

=
ρ

2
(2g Fz ℓ0)

2/3 , (32)

ξ
(

B
)

=
2

3

D
1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)2

, (33)

and B
2
eq = 2µ0E

(0)
K

. Nonlinear equation (31) has the follow-

ing asymptotic solution: Ẽ1/2
K

= 1 for ξ
(

B
)

Ẽ1/2
K

≪ 1, and

Ẽ1/2
K

= ξ
(

B
)

for ξ
(

B
)

Ẽ1/2
K

≫ 1. Thus, an approximate so-
lution of the nonlinear equation (31) can be constructed as
a linear combination of these asymptotic solutions, i.e., the
turbulent kinetic energy density for strong mean magnetic
fields behaves as

E
K
≈ E(0)

K

[

1 +
D

1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)2
]

. (34)

This implies that equation (34) for the turbulent kinetic en-
ergy density for strong mean magnetic fields for convective
turbulence is similar to Eq. (25) derived for a shear-produced
non-convective turbulence. The difference is only in equa-
tion for E(0)

K
that is given by Eq. (32) for a convective tur-

bulence. Therefore, equations for the ratios η(B)
T

(

B
)

/η(0)
T

,

η(A)
T

(

B
)

/η(B)
T

(

B
)

and DN

(

B
)

/DL in a convective tur-
bulence for strong mean magnetic fields are similar to
Eqs. (27)–(29), respectively.

In a forced turbulence, the turbulent kinetic energy den-
sity for a strong mean magnetic field is given by

E
K
= τ0

[

ρ 〈u · f〉 − 1

µ0
E
(

B
)

· (∇×B)

]

, (35)

where we take into account that the largest contribution
to the production rate of TTE in a non-convective forced
turbulence for a strong mean magnetic field is due to the
terms −E

(

B
)

· (∇ × B)/µ0 and ρ 〈u · f〉 [see Eq. (16)].
Therefore, the turbulent kinetic energy density for strong
mean magnetic fields behaves as

E
K
≈ E(0)

K

[

1 +
1

8

D
1/2
cr

DL

(

ℓ0
LB

)2(
B

Beq

)

]

, (36)

where E(0)
K

= ρ τ0 〈u · f〉. This yields the estimates for the

ratio η(B)
T

(

B
)

/η(0)
T

as

η(B)
T

(

B
)

η
(0)
T

≈ 1

4

[

1 +
D

1/2
cr

8DL

(

ℓ0
LB

)2 (
B

Beq

)

]

(

B

Beq

)−1

,

(37)

where the ratio η(A)
T

(

B
)

/η(B)
T

(

B
)

is given by Eq. (28). Us-
ing Eq. (37), we determine the ratio of nonlinear and linear
dynamo numbers DN

(

B
)

/DL in a non-convective forced
turbulence for strong mean magnetic fields as

DN

(

B
)

DL
≈ 32

[

1 +
1

8

D
1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)

]

−2

×α
(

B
)

α
(0)
K

(

B

Beq

)3

. (38)

Equations (29) and (38) imply that for the αΩ dynamo, the
nonlinear dynamo number decreases with increase of the
mean magnetic field for a forced turbulence, and a shear-
produced turbulence and a convective turbulence. This
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causes saturation of the mean-field αΩ dynamo instability
for a strong mean magnetic field.

4 MEAN-FIELD α2 DYNAMO

In this section, we consider mean-field α2 dynamo. First,
we discuss a long-standing question when a one-dimensional
kinematic α2 dynamo can be oscillatory. The mean magnetic
field B(t, z) = ∇ × A = (−∇zAy,∇zAx, 0) is determined
by the following equation

∂Ψ

∂t
= L̂Ψ, (39)

where A is the mean magnetic vector potential in the Weyl
gauge. The linear operator L̂ and the function Ψ(t, z) are
given by

L̂ =

(

η(0)
T

∇2
z −α(0)

K
∇z

α(0)
K

∇z η(0)
T

∇2
z

)

, Ψ =

(

Ax

Ay

)

, (40)

where η(0)
T

is the turbulent magnetic diffusion coefficient,

and α(0)
K

is the kinetic α effect caused by the helical turbulent
motions in plasma.

When can a one-dimensional kinematic α2 dynamo be
oscillatory? First, if the linear operator L̂ is not self-adjoint,
it has complex eigenvalues. This case corresponds to the
oscillatory growing solution, i.e., the dynamo is oscillatory.
On the other hand, any self-adjoint operator, M̂ , defining
by the following condition,
∫

Ψ∗M̂Ψ̃ dz =

∫

Ψ̃M̂∗Ψ∗ dz, (41)

has real eigenvalues, where the asterisk denotes complex
conjugation. Now we determine conditions when the linear
operator L̂ is not self-adjoint, i.e., it has complex eigenval-
ues. To this end, we determine the integrals

∫

Ψ∗L̂Ψ̃ dz and
∫

Ψ̃L̂∗Ψ∗ dz as:
∫

Ψ∗L̂Ψ̃ dz =

∫

α(0)
K

(

A∗

y∇zÃx − A∗

x∇zÃy

)

dz

−
∫

η(0)
T

[

(∇zA
∗

x) ∇zÃx +
(

∇zA
∗

y

)

∇zÃy

]

dz

+
[

η(0)
T

(

A∗

x ∇zÃx + A∗

y ∇zÃy

)]z=Ltop

z=Lbott

, (42)

∫

Ψ̃L̂∗Ψ∗ dz =

∫

α(0)
K

(

A∗

y∇zÃx −A∗

x∇zÃy

)

dz

−
∫

η(0)
T

[

(∇zA
∗

x) ∇zÃx +
(

∇zA
∗

y

)

∇zÃy

]

dz

+

[

η(0)
T

(

Ãx ∇zA
∗

x + Ãy ∇zA
∗

y

)

+ αk

(

A∗

xÃy

−A∗

y Ãx

)]z=Ltop

z=Lbott

, (43)

where z = Lbott and z = Ltop are the bottom and upper
boundaries, respectively. When η(0)

T
and α(0)

K
vanish at the

boundaries where the turbulence is very weak, the operator
L̂ satisfies condition (41) and the α2 dynamo is not oscil-
latory. On the other hand, when α(0)

K
vanishes only at one

boundary, while it is non-zero at the other boundary, the
operator L̂ does not satisfy condition (41), and the α2 dy-
namo is oscillatory. The latter case has been considered in

analytical study by Shukurov et al. (1985); Rädler & Bräuer
(1987) and in numerical study by Baryshnikova & Shukurov
(1987). Brandenburg (2017) has recently considered the one-
dimensional kinematic α2 dynamo with different conditions
at two boundaries: A = 0 at z = Lbott and ∇zA = 0 at
z = Ltop, so that the operator L̂ may not satisfy condi-
tion (41), and the α2 dynamo may be oscillatory.

Now we consider the nonlinear axisymmetric mean-field
α2 dynamo, so that nonlinear mean-field induction equation
reads

∂

∂t

(

A

By

)

= N̂

(

A

By

)

, (44)

where the mean magnetic field is B = By(t, x, z)ey +
rot[A(t, x, z)ey], the operator N̂ is given by

N̂ =





η(A)
T

(

B
)

∆ α
(

B
)

−R2
α∇jα

(

B
)

∇j ∇jη
(B)
T

(

B
)

∇j



 , (45)

and the total α effect is given by α
(

B
)

= α
K

(

B
)

+

α
M

(

B
)

. Now we introduce the effective dynamo number

D
(α)
N

(

B
)

in the nonlinear α2 dynamo defined as D
(α)
N

(

B
)

=

α2
(

B
)

L2/[η(B)
T

(

B
)

η(A)
T

(

B
)

]. Similarly, the effective dy-

namo number for a linear α2 dynamo is defined as D
(α)
L =

R2
α, where Rα = α∗L/η

(0)
T

, α∗ is the maximum value of the
kinetic α effect and L is the stellar radius or the thickness
of the galactic disk.

Since poloidal and toroidal components of the mean
magnetic field in the nonlinear α2 mean-field dynamo are
of the same order of magnitude, Eqs. (29) and (38) obtained
in Section 3 for αΩ mean-field dynamo can be used for the
nonlinear α2 mean-field dynamo except for they should not
contain the ratio D

1/2
cr /DL (which is the ratio of energies

of the poloidal and toroidal mean magnetic fields). There-
fore, in a shear-produced non-convective turbulence and in
a convective turbulence, the ratio D

(α)
N

(

B
)

/D
(α)
L for strong

mean magnetic fields is given by

D
(α)
N

D
(α)
L

≈ 32

[

1 +

(

ℓ0
LB

)2(
B

Beq

)2
]

−2

×
(

α
(

B
)

α
(0)
K

)2
(

B

Beq

)3

, (46)

while for forced turbulence, the ratio D
(α)
N

(

B
)

/D
(α)
L for

strong mean magnetic fields is given by

D
(α)
N

(

B
)

D
(α)
L

≈ 32

[

1 +
1

8

(

ℓ0
LB

)2(
B

Beq

)

]

−2

×
(

α
(

B
)

α
(0)
K

)2
(

B

Beq

)3

. (47)

These equations take into account the feedback of the mean
magnetic field on the background turbulence by means of
the budget equation for the total turbulent energy. Thus,
Eqs. (46)–(47) imply that for the α2 dynamo, the nonlin-
ear dynamo number decreases with increase of the mean
magnetic field for a forced turbulence, and a shear-produced
turbulence and a convective turbulence. This causes a satu-
ration of the mean-field α2 dynamo instability for a strong
mean magnetic field.
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5 MEAN-FIELD α2Ω DYNAMO

In this section, we consider the axisymmetric mean-field α2Ω
dynamo, so that and nonlinear mean-field induction equa-
tion reads

∂

∂t

(

A

By

)

= N̂

(

A

By

)

, (48)

where the mean magnetic field is B = By(t, x, z)ey +
rot[A(t, x, z)ey], the operator N̂ is

N̂ =







η(A)
T

(

B
)

∆ α
(

B
)

Rα

[

RωΩ̂−Rα∇jα
(

B
)

∇j

]

∇jη
(B)
T

(

B
)

∇j






,

(49)

Rα = α∗L/η
(0)
T

and Rω = (δΩ)L2/η(0)
T

.
First, we consider a kinematic dynamo problem, assum-

ing for simplicity that the kinetic α effect is a constant, and
the mean velocity U = (0, Sz, 0). We seek a solution for
Eq. (48) as a real part of the following functions:

A = A0 exp[γ̃t− i (kxx+ kzz))], (50)

Bϕ = B0 exp[γ̃t− i (kxx+ kzz))], (51)

where γ̃ = γ+iω. Equations (48)–(51) yield the growth rate
of the dynamo instability and the frequency of the dynamo
waves as

γ =
RαR

cr
α√

2





[

1 +

(

ζRω

RαRcr
α

)2
]1/2

+ 1





1/2

− (Rcr
α )2 ,

(52)

ω = −sgn(Rω)
RαR

cr
α√

2





[

1 +

(

ζRω

RαRcr
α

)2
]1/2

− 1





1/2

, (53)

where ζ2 = 1 − (kx/R
cr
α )2. Here we took into account that

(x+iy)1/2 = ±(X+iY ), whereX = 2−1/2 [(x2+y2)1/2+x]1/2

and Y = sgn(y) 2−1/2 [(x2+y2)1/2−x]1/2. Here the threshold
Rcr

α for the mean-field dynamo instability, defined by the
conditions γ = 0 and Rω = 0, is given by Rcr

α = (k2
x+k2

z)
1/2.

Equations (48)–(51) also yield the squared ratio of am-
plitudes |A0/B0|2,
∣

∣

∣

∣

A0

B0

∣

∣

∣

∣

2

= (RαR
cr
α )−2 (1 + ζ2R2

ω

)

−1
, (54)

and the phase shift between the toroidal Bϕ and poloidal
Bpol components of the mean magnetic field,

sin(2δ) = −ζRω

[

(RαR
cr
α )2 + ζ2R2

ω

]

−1/2

, (55)

where Bpol = RαR
cr
α A. Equation (54) yields the energy ra-

tio of poloidal Bpol and toroidal Bϕ mean magnetic field
components as

B
2
pol

B
2
ϕ

=
(

1 + ζ2R2
ω

)

−1
. (56)

Asymptotic formulas for the growth rate of the dynamo
instability and the frequency of the dynamo waves for a weak

differential rotation, ζRω ≪ RαR
cr
α , are given by

γ = RαR
cr
α

[

1 +
1

8

(

ζRω

RαRcr
α

)2
]

− (Rcr
α )2 , (57)

ω = − ζRω√
2
. (58)

In this case, the mean-field α2 dynamo is slightly modified
by a weak differential rotation, and the phase shift between
the fields Bϕ and Bpol vanishes, while Bpol/Bϕ ∼ 1 [see
Eqs. (55)–(56)]. In the opposite case, for a strong differential
rotation, ζRω ≫ RαR

cr
α , the growth rate of the dynamo

instability and the frequency of the dynamo waves are given
by

γ =

[

1

2
ζ Rcr

α Rα|Rω|
]1/2

− (Rcr
α )2 , (59)

ω = −sgn(Rω)

[

1

2
ζ Rcr

α Rα|Rω|
]1/2

. (60)

In this case, the mean-field αΩ dynamo is slightly modi-
fied by a weak α2 effect, and the phase shift between the
fields Bϕ and Bpol tends to −π/4, while Bpol/Bϕ ≪ 1 [see
Eqs. (55)–(56)].

The necessary condition for the dynamo (γ > 0) reads:

• when Rα/R
cr
α <

√
2, the mean-field α2 Ω dynamo is

excited when

DL >
2

ζ
(Rcr

α )3 ; (61)

• when Rα/R
cr
α >

√
2, the mean-field α2 Ω dynamo is

excited for any differential rotation, Rω. Here DL = Rα Rω.

Analysis which is similar to that performed in Section 3
yields the ratio of the nonlinear and linear dynamo numbers
DN

(

B
)

/DL in the nonlinear α2Ω dynamo for strong mean
magnetic fields in a shear-produced and a convective turbu-
lence as

DN

(

B
)

DL
≈ 32

[

1 +
D

1/2
cr

DL

(

ℓ0
LB

)2(
B

Beq

)2
]

−2

×α
(

B
)

α
(0)
K

(

B

Beq

)3

, (62)

and in a forced turbulence as

DN

(

B
)

DL
≈ 32

[

1 +
1

8

D
1/2
cr

DL

(

ℓ0
LB

)2 (
B

Beq

)

]

−2

×α
(

B
)

α
(0)
K

(

B

Beq

)3

. (63)

Equations (62)–(63) show that for the α2Ω dynamo, the
nonlinear dynamo number decreases with increase of the
mean magnetic field for a forced turbulence, and a shear-
produced turbulence and a convective turbulence. This im-
plies that the nonlinear mean-field α2Ω dynamo instability
is always saturated for strong mean magnetic fields. When
(ζRω)

2 ≪ 1, the poloidal and toroidal mean magnetic fields
are of the same order of magnitude, so that Eqs. (62)–(63)

do not contain factor D
1/2
cr /DL, which is the ratio of ener-

gies of the poloidal and toroidal mean magnetic fields. This
is similar to the mean-field nonlinear α2 dynamo.
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6 CONCLUSIONS

In the sun, stars and galaxies, the large-scale magnetic fields
are originated due to the mean-field dynamo instabilities.
The saturation of the dynamo generated large-scale mag-
netic fields is caused by algebraic and dynamic nonlineari-
ties. However, these nonlinearities do not take into account
the feedback of the generated mean magnetic field on the
background turbulence. This nonlinear effect can be taking
into account by means of the budget equation for the total
turbulent energy. Using this approach and considering vari-
ous origins of turbulence (e.g., a forced turbulence, a shear-
produced turbulence and a convective turbulence), we have
demonstrated that the mean-field αΩ, α2 and α2Ω dynamo
instabilities can be always saturated for any strong mean
magnetic field. This is because the feedback of the gener-
ated mean magnetic field on the background turbulence in
combination with the algebraic and dynamic nonlinearities,
result in the decrease of the nonlinear dynamo number with
increase of the mean magnetic field. These results have very
important applications for astrophysical magnetic fields.
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APPENDIX A: THE NONLINEAR FUNCTIONS

The nonlinear functions qp(β) and qs(β) are given by

qp(β) =
2

3β2

[

A
(0)
1 (0)− A

(0)
1 (

√
2β)− A

(0)
2 (

√
2β)
]

, (A1)

qs(β) = − 2

3β2
A

(0)
2 (

√
2β), (A2)

where β =
√
8 B/Beq. For the derivation Eqs. (A1)–(A2)

over the angles in k-space we used the following identity:

Īij =

∫

kij sin θ

1 + a cos2 θ
dθ dϕ = Ā1δij + Ā2βij , (A3)

where a = β2/τ̄ (k), and

Ā1 =
2π

a

[

(a+ 1)
arctan(

√
a)√

a
− 1

]

,

Ā2 = −2π

a

[

(a+ 3)
arctan(

√
a)√

a
− 3

]

The functions A
(0)
n (β) are given by

A(0)
n (β) =

3β2

π

∫ βRm1/4

β

Ān(X
2)

X3
dX. (A4)

The functions A
(0)
1 (β) and A

(0)
2 (β) are given by

A
(0)
1 (β) =

1

5

[

2 + 2
arctan β

β3
(3 + 5β2)− 6

β2
− β2 ln Rm

−2β2 ln

(

1 + β2

1 + β2
√
Rm

)]

, (A5)

A
(0)
2 (β) =

2

5

[

2− arctan β

β3
(9 + 5β2) +

9

β2
− β2 ln Rm

−2β2 ln

(

1 + β2

1 + β2
√
Rm

)]

. (A6)

For B ≪ Beq/4Rm1/4, these functions are given by

A
(0)
1 (β) ∼ 2− 1

5
β2 ln Rm,

A
(0)
2 (β) ∼ −2

5
β2

[

ln Rm+
2

15

]

.

For Beq/4Rm1/4 ≪ B ≪ Beq/4, these functions are given

by

A
(0)
1 (β) ∼ 2 +

2

5
β2

[

2 lnβ − 16

15
+

4

7
β2

]

,

A
(0)
2 (β) ∼ 2

5
β2

[

4 ln β − 2

15
− 3β2

]

,

and for B ≫ Beq/4, they are given by

A
(0)
1 (β) ∼ π

β
− 3

β2
, A

(0)
2 (β) ∼ −π

β
+

6

β2
.
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